4 resultados para Claudin

em ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elf3 gehört zur Familie der Ets-Transkriptionsfaktoren und wird unter nicht-entzündlichen Bedingungen ausschließlich in epithelialen Zellen exprimiert, vor allem in den Enterozyten des gastrointestinalen Traktes. Um die Rolle des Transkriptionsfaktors Elf3 in Hinblick auf potentielle Zielgene und Einflüsse auf die Darm-Morphologie zu untersuchen, wurde ein Vektorsystem für die konditionelle Expression eines dominant-negativen Elf3 (dnElf3) in Darmepithelzellen generiert. Regulatorische Elemente des humanen Keratin 20 Gens in Kombination mit dem Cre/loxP-System ermöglichten eine induzierbare, darmepithel-spezifische Expression in transgenen Mäusen. Die Expression von dnElf3 führt zu einem signifikanten Gewichtsverlust und deutlichen morphologischen Veränderungen des Darmepithels. Im Dünndarm konnte ein erhöhte Anzahl von Becherzellen und eine verstärkte Mukusproduktion nachgewiesen werden. Sowohl die Keratin 8 Expression, als auch die Expression des Zellmembranproteins Claudin 7 waren signifikant herab reguliert. Im Rahmen dieser Arbeit konnte erstmals eine Regulation der Claudin 7 Expression durch Elf3 im Darm gezeigt werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tumour suppressor gene cyld is mutated in familial cylindromatosis, an autosomal-dominant condition that predisposes to multiple skin tumours. The deubiquitinase CYLD acts as a negative regulator of NF-κB signaling. To analyse the function of CYLD in vivo we used the CYLDex7/8 mice, which are characterized by loss of the full-length transcript and overexpression of a short splice variant of CYLD (sCYLD). In CYLDex7/8 mice the overexpression of sCYLD results in splenomegaly and lymphadenopathy. Additionally, the B cell population in spleen and lymph nodes is increased at the expense of T cells. Analysis of CYLDex7/8 T cells showed a significant reduction of CD4 single positive (SP) and CD8 SP T cells in the thymus and in the periphery. By investigating the impact of sCYLD in TCR signaling in thymocytes, we could demonstrate that sCYLD partially inhibited the activation of Zap70 and thereby negatively regulated TCR signaling. In vitro as well as in vivo we could show that CD4+ T cells displayed a hyperactive phenotype, proliferated to a better extent than WT cells and expressed high amounts of inflammatory cytokines such as IL-6 and IL-17A. Western Blots of steady state thymocytes and peripheral CD4+ T cells were performed, showing that the noncanonical pathway was highly upregulated visualized by the expression levels of RelB and p100 leading to a hyperactive phenotype of CD4+ T cells. In order to investigate the contribution of sCYLD in positive and negative selection in the thymus in vivo, the HY-TCR transgene (HYtg) was crossed to CYLDex7/8 mice. The analysis of CYLDex7/8 HYtg males revealed an increase in CD4+CD8+ DP as well as in CD8+ SP thymocytes, suggesting a less pronounced negative selection in CYLD mutant mice compared to HYtg control mice. Interestingly, the impaired negative selection in the thymus was accompanied by a strong colitis phenotype at early ages (4 weeks). Since medullary TECs (mTECs) play an important role in the late stage of T cell development by negatively selecting autoreactive thymocytes, the levels of mTECs in the medullary compartment was investigated. Of note, low numbers of mTECs were observed, combined with decreased expression levels of the mTEC markers UEA-1, keratin-5, claudin-3 and claudin-4. The reduction of mTECs in the medullary compartment could explain the inflammatory phenotype of CD4+ T cells in CYLDex7/8 mice leading to the severe intestinal pathology observed in these mice. Taken together, these results show an important role of sCYLD in T cell development and function as well as in NF-кB signaling of T cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disruption of the blood-brain barrier (BBB) results in cerebral edema formation, which is a major cause for high mortalityrnafter traumatic brain injury (TBI). As anesthetic care is mandatory in patients suffering from severe TBI it may be importantrnto elucidate the effect of different anesthetics on cerebral edema formation. Tight junction proteins (TJ) such as zonularnoccludens-1 (ZO-1) and claudin-5 (cl5) play a central role for BBB stability. First, the influence of the volatile anestheticsrnsevoflurane and isoflurane on in-vitro BBB integrity was investigated by quantification of the electrical resistance (TEER) inrnmurine brain endothelial monolayers and neurovascular co-cultures of the BBB. Secondly brain edema and TJ expression ofrnZO-1 and cl5 were measured in-vivo after exposure towards volatile anesthetics in native mice and after controlled corticalrnimpact (CCI). In in-vitro endothelial monocultures, both anesthetics significantly reduced TEER within 24 hours afterrnexposure. In BBB co-cultures mimicking the neurovascular unit (NVU) volatile anesthetics had no impact on TEER. In healthyrnmice, anesthesia did not influence brain water content and TJ expression, while 24 hours after CCI brain water contentrnincreased significantly stronger with isoflurane compared to sevoflurane. In line with the brain edema data, ZO-1 expressionrnwas significantly higher in sevoflurane compared to isoflurane exposed CCI animals. Immunohistochemical analysesrnrevealed disruption of ZO-1 at the cerebrovascular level, while cl5 was less affected in the pericontusional area. The studyrndemonstrates that anesthetics influence brain edema formation after experimental TBI. This effect may be attributed tornmodulation of BBB permeability by differential TJ protein expression. Therefore, selection of anesthetics may influence thernbarrier function and introduce a strong bias in experimental research on pathophysiology of BBB dysfunction. Futurernresearch is required to investigate adverse or beneficial effects of volatile anesthetics on patients at risk for cerebral edema.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The blood-brain barrier (BBB) and the blood-spinal cord barrier (BSCB) separate the brain and the spinal cord from the circulating blood and are important for the maintenance of the CNS homeostasis. They build a physical barrier thereby protecting the CNS from pathogens and toxic agents, and their disruption plays a crucial role in the pathogenesis of several CNS disorders. In this thesis, the blood-CNS-barriers were studied via in vitro models in two case studies for neurodegenerative disorders, in particular Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). The first model evaluates treatment possibilities of AD using nanotechnology-based strategies. Since the toxic amyloid-β42 (Aβ42) peptide plays a crucial role in the pathogenesis of AD, reduced generation or enhanced clearance of Aβ42 peptides are expected to modify the disease course in AD. Therefore, several Aβ42-lowering drugs like flurbiprofen had been tested in clinical trials, but most of them failed due to their low brain penetration. Here, flurbiprofen was embedded in polylactide (PLA) nanoparticles and its transport was examined in an in vitro BBB model. The embedding of flurbiprofen into the nanoparticles disguised its cytotoxic potential and enabled the administration of higher drug concentrations which resulted in a sufficient transport of the drug across an endothelial cell monolayer. These results demonstrate that non-permeable drugs can be transported efficiently via nanoparticles and that these nanotechnology-based strategies are a promising tool to generate novel therapeutic options for AD and other CNS diseases. rnThe focus of the second project was to investigate the impaired integrity of the BSCB in a mouse model for ALS. About 20% of all familial ALS cases are associated with missense mutations or small deletions in the gene that encodes Cu/Zn-superoxide dismutase 1 (SOD1). To date, the molecular mechanisms resulting in ALS are still unknown, but there is evidence that the disruption of the BSCB is one of the primary pathological events. In both familial and sporadic ALS patients, loss of endothelial integrity and endothelial cell damage was observed, and studies with SOD1 transgenic mice demonstrated that the BSCB disruption was found prior to motor neuron degeneration and neurovascular inflammation. Thus, an in vitro model for ALS endothelial cells was generated which exhibited comparable integrity characteristics and tight junction (TJ) protein expression profiles as isolated primary endothelial cells of the BSCB of SOD1 transgenic mice. In this, an alteration of the βcat/AKT/FoxO1 pathway, which regulates the expression of the TJ protein claudin-5, could be observed. These data furthermore indicate that ALS is a neurovascular disease, and understanding of the primary events in ALS pathogenesis will hopefully provide ideas for the development of new therapeutic strategies. rn